Total Pageviews

Wednesday, August 28, 2019

Benítez et al. (2018) -- Ocean acidification is not a problem for giant mussels

Benítez, S., Lagos, N.A., 
Osores, S., Opitz, T., 
Duarte, C., Navarro, J.M. 
and Lardies, M.A. 

2018

High pCO2 levels affect 
metabolic rate, but not 
feeding behavior and fitness, 
of farmed giant mussel 
Choromytilus chorus. 

Aquaculture Environment Interactions 10: 
267-278.


NOTE:
Choromytilus chorus is a 
giant mussel species 
that inhabits subtidal 
and intertidal locations 
off the coast 
of southern Chile. 

Annual production 
has increased a lot
in recent years,
from 339 tons 
of biomass in 2012, 
to 2,090 tons in 2014. 




SUMMARY:
Under elevated 
pCO2 conditions, 
C. chorus juveniles 
experienced increased 
metabolic rates. 

Other physiological traits 
remained unaffected, 
including clearance 
and ingestion rates, 
ammonia excretion, 
adsorption efficiency, 
growth rates, 
biomass production, 
net calcification, and 
net dissolution rates.

No juveniles experienced 
mortality in any of the 
three pCO2 treatments.

"One possible explanation 
for this tolerance is that 
C. chorus inhabits 
a wide range of 
environmental conditions 
(e.g. estuaries and the 
marine environment), 
involving variable 
carbonate availability 
(see Melzner et al., 2013; 
Vargas et al., 2017) 
and thus has acclimatized 
to overcome the 
negative effects 
of high pCO2 
conditions."




DETAILS:
Benítez et al. (2018) 
exposed juvenile C. chorus 
specimens in a laboratory 
setting to three pCO2 
treatment conditions 
(500, 750 or 1200 µatm) 
over a period of 30 days 
to evaluate its physiological 
response to ocean acidification.

Benítez et al. write that 
"similar results 
have been reported 
in other studies of bivalves 
from estuarine 
and upwelling zones
(e.g. Duarte et al., 2014; 
Lagos et al., 2106; 
Lardies et al., 2017) 
and also in 
other mussel species 
that appear resilient 
to elevated pCO2 
(e.g. Thomsen and 
Melzner, 2010; 
Mackenzie et al., 2014; 
Clements et al., 2018)." 











REFERENCES:
Clements, J.C., Hicks, C., 
Tremblay, R. and Comeau, L.A. 
2018. 
Elevated seawater temperature, 
not pCO2, negatively affects 
post-spawning adult mussels 
Mytilus edulis) under food limitation. 
   Conservation Physiology 6: 
cox078.


Duarte, C., Navarro, J.M., 
Acuña, K., Torres, R., 
Manriquez, P.H., 
Lardies, M.A., 
Vargas, C.A. et al. 
2014. 
Combined effects of temperature 
and ocean acidification 
on the juvenile individuals 
of the mussel Mytilius chilensis. 
   Journal of Sea Research 85: 
308-314.


Lagos, N.A., Benítez, S., 
Duarte, C., Lardies, M.A., 
Broitman, B.R., Tapia, C.S.M., 
Tapia, P.N.G., Widdicombe, S. 
and Vargas, C.A.T. 
2016. 
Effects of temperature 
and ocean acidification 
on shell characteristics 
of Argopecten purpuratus: 
implications for scallop 
aquaculture in an 
upwelling-influenced area. 
   Aquaculture Environment Interactions 8: 
357-370.


Lardies, M.A., Benítez, S., 
Osores, S., Vargas, C.A., 
Duarte, C., Lohrmann, K.B. 
and Lagos, N.A. 
2017. 
Physiological and histo-pathological 
impacts of increased carbon dioxide 
and temperature on the scallops 
Argopecten purpuratus cultured 
under upwelling influences 
in northern Chile. 
   Aquaculture 479: 
455?466.


Mackenzie, C.L., Ormondroyd, G.A., 
Curling, S.F., Ball, R.J., Whitely, N.M. 
and Malham, S.K. 
2014. 
Ocean warming, 
more than acidification, 
reduces shell strength in a
 commercial shellfish species 
during food limitation. 
   PLOS ONE 9: 
e86764.


Melzner, F., Thomsen, J., 
Koeve, W., Oschlies, A., 
Gutowska, M.A., Bange, H.W., 
Hansen, H.P. and Körtzinger, A. 
2013. 
Future ocean acidification 
will be amplified by hypoxia 
in coastal habitats. 
   Marine Biology 160: 
1875-1888.


Thomsen, J. and Melzner, F. 
2010. 
Moderate seawater acidification 
does not elicit long-term 
metabolic depression 
in the blue mussel 
Mytilus edulis. 
   Marine Biology 157: 
2667-2676.


Vargas, C.A., Lagos, N.A., 
Lardies, M.A., Duarte, C., 
Manríquez, P.H., Aguilera, V.M., 
Broitman, B., Widdicombe, S. 
and Dupont, S. 
2017. 
Species-specific responses 
to ocean acidification 
should account for local 
adaptation and adaptive plasticity. 
   Nature Ecology & Evolution 1: 
0084.