Total Pageviews

Saturday, February 1, 2020

Jacotot et al. (2018) -- Elevated CO2 and temperature improves growth of two mangrove species

Jacotot, A., Marchand, C., 
Gensous, S. and Allenbach, M. 

2018

Effects of elevated 
atmospheric CO2 and 
increased tidal flooding 
on leaf gas-exchange 
parameters of two 
common mangrove 
species: 
Avicennia marina and 
Rhizophora stylosa. 

Photosynthesis Research 138: 249-260.



NOTE:
Jacotot et al. (2018) 
say that "future climate 
change could affect 
the functioning of 
mangrove ecosystems, 
such as their productivity 
and carbon sequestration 
capacities, or even 
their ability to conquer 
new available spaces." 


SUMMARY:
"Elevated 
atmospheric CO2 
concentrations 
will increase 
mangrove 
net productivity" 

"Increase 
in temperature 
will raise the 
beneficial effect 
of elevated CO2" 

"Elevated CO2 
will help 
mangrove trees 
to resist drought."

Similar findings 
were noted for 
water use efficiency, 
where elevated CO2 
increased this 
parameter by 
+58% and +113% 
in A. marina and by 
+98% and +112% 
in R. stylosa
 under normal and 
longer tidal flooding 
durations, respectively. T



DETAILS:
Increased 
water use 
efficiency 
was the 
combined result 
of increased 
photosynthesis, 
and decreased 
transpiration rates, 
in both 
mangrove species, 
under elevated CO2. 

The observed 
improvement 
of water use 
efficiency 
at higher CO2 
should help 
these mangrove 
species 
"resist drought episodes."

The positive effects 
on photosynthesis 
were 
"more pronounced 
during the warm season, 
suggesting that an increase 
in global temperatures 
would further enhance 
the photosynthetic response 
of the considered species," 
   noting that there was 
"a clear difference in 
the photosynthetic response 
to elevated CO2 
between the cool season 
and the warm season, 
which increased 
from 32 to 40% and 
from 38 to 45% 
for A. marina and 
R. stylosa, respectively."

An increase 
in tidal flooding 
duration had no
statistically significant 
impact on net 
photosynthesis
for either 
mangrove species 
under ambient CO2 
and that it had 
only a small effect 
  (3-5% decline) 
under elevated 
CO2 conditions. 

Their experiment 
was conducted in 
controlled-
environment 
greenhouses in the
city of Mont-Dore 
in New Caledonia
from June 2016 
through May 2017. 

Two-year-old 
seedlings of the two 
mangrove species 
were grown in the 
greenhouses under 
ambient (400 ppm) 
or elevated (800 ppm) 
CO2, with the elevated 
CO2 being supplied 
during 0500 to 1900 
hours each day.

In addition, the plants 
were subjected to normal 
(3.25 hours for A. marina 
and 6.0 hours for R. stylosa)
 or increased 
(an extra 1.75 hours) 
tidal flooding durations 
to simulate what the 
authors describe as 
"realistic" durations
of tidal flooding 
under expected 
end-of-the-century 
sea level rise 
projections.


Figure 1:
Displays the effects 
of elevated CO2 
and tidal flooding 
on net photosynthesis 
and water use efficiency 
of A. marina and R. stylosa. 

Elevated CO2 induced 
a +59% increase in 
net photosynthesis 
in A. marina regardless of 
tidal flooding duration, 
whereas for R. stylosa 
net photosynthesis 
increased by +77% 
under normal flooding 
and by +74% under 
longer-duration flooding. 

Elevated CO2 
did not influence 
dark respiration
( "no down regulation 
[of photosynthesis] 
was observed." )

  Mean values 
± SEM (n = 360) 
of net photosynthesis 
         (A, B) 
and water use efficiency 
         (C, D) 
for A. marina and 
R. stylosa grown 
in ambient CO2
    (400 ppm) 
or elevated CO2
   (800 ppm) 
and under normal 
(dark green or blue) 
   and longer 
(light green or blue) 
tidal flooding 
durations 
for 12 months. 

Different letters 
indicate significant 
differences 
      (p < 0.05) 
and red percentages 
indicate the 
percent change 
in net photosynthesis
            (Pn) 
or water use efficiency 
         (WUE) 
due to elevated CO2 
         at a given 
tidal flooding duration 
            (TFD).