Total Pageviews

Monday, May 4, 2020

Li et al. (2020) -- Elevated CO2 Increases Rice Mineral Content

Li, C., Zhu, J., 
Zeng, Q. 
and Liu, G. 

2020

Changes in micro-element 
availability in a paddy field 
exposed to long-term 
atmospheric CO2 enrichment. 

Journal of Soils and Sediments 
https://doi.org/10.1007/s11368-020-02601-7.


NOTE:
Li et al. (2020) note that 
"plant-soil interactions 
in the context of elevated 
atmospheric CO2 
have received much attention 
and micronutrients play 
an important role in plant 
development and reproduction." 

Much remains to be learned 
as to how future changes 
in atmospheric CO2 
may alter micronutrient 
availability, and their 
concentrations in plant 
organs, which can affect 
plant growth and yield.

Li et al. examined 
the concentrations of 
iron (Fe), 
manganese (Mn) 
       and 
zinc (Zn) 
in rice and the availability 
of these micronutrients 
within the surrounding soil 
under ambient 
       (370 ppm) 
    and elevated 
       (566 ppm) 
CO2 concentrations. 



SUMMARY:
The four Chinese researchers 
conclude that "elevated CO2 
still enhanced dry matter production 
and accumulation of Fe, Mn, and Zn 
in rice after 10 years [of] CO2 treatment." 

No management strategy 
was needed to supply 
these necessary 
micronutrients
in order to achieve 
the CO2-induced 
dry matter 
enhancement.

The chart below shows
 the content and concentration 
of the three studied micronutrients 
within the rice grain at harvest. 

Iron was slightly lower,
but Mn and Zn were higher
under elevated CO2.


DETAILS:
The experiment 
was conducted 
at Xiaoji town, 
Jiangdu City, 
Jiangsu Province, 
China, 
on a FACE site 
that had been 
in operation 
for 10 years. 

CO2 enrichment had been 
in operation at the site 
for many years, 
so the authors felt 
any long-term effect 
of elevated CO2 on 
micronutrient availability 
and concentration 
would likely be evident.

CO2 enrichment 
"stimulated 
rice growth 
and increased 
the dry matter 
production." 

With respect to 
nutrient availability, 
"CO2 enrichment 
enhanced the input 
of soil organic matter 
and improved 
microbial activity." 

The higher microbial activity,
likely increased soil nutrient 
mineralization, and supplied 
more available nutrients. 

The end result was that 
"the bio-availability of Fe, Mn, 
and Zn in 0-10 cm soil 
increased under elevated CO2."


CHART  BELOW:
Rice grain 
concentration 
and content of 
Fe, Mn and Zn 
at maturity under 
ambient (Amb) 
and elevated
     (FACE) 
CO2 conditions. 

Data represented 
the mean (± SE) 
of three replicates. 

Same letter indicates 
non-significance existed 
between Amb and FACE.