Total Pageviews

Thursday, April 4, 2019

Aerial Fertilization With CO2

Higher atmospheric levels 
of carbon dioxide (CO2) 
act as a fertilizer 
for the world’s plants.

A good summary 
of real science studies 
proving that point
are here:





All across the planet, 
the increase in the
atmosphere’s 
CO2 concentration 
has stimulated 
vegetative productivity 
(Zhu et al., 2016; 
Cheng et al., 2017). 

Thousands of studies 
and experiments
demonstrate the 
growth-enhancing,
water-conserving, and 
stress-alleviating effects 
of elevated atmospheric CO2. 
(Idso and Idso, 1994; 
Ainsworth and Long, 2005; 
Bunce, 2005, 2012, 2013, 2014, 2016; 
Bourgault et al., 2017; 
Sanz-Sáez et al., 2017; 
Sultana et al., 2017). 

A doubling of atmosphere’s
will raise the productivity 
of Earth’s herbaceous plants 
by 30% to 50% 
(Kimball, 1983; 
Idso and Idso, 1994), 
while the productivity 
of its woody plants will rise 
by 50% to 80% 
(Saxe et al. 1998; 
Idso and Kimball, 2001).

Claims that global warming 
will reduce global food output 
are based on computer models 
not real-world data. 

Crop yields have 
continued to rise globally.



REFERENCES:
Bunce, J.A. 2005. 
Seed yield of soybeans with daytime 
or continuous elevation of carbon dioxide 
under field conditions. 
Photosynthetica 43: 435–8.


Bunce, J.A. 2012. 
Responses of cotton 
and wheat photosynthesis 
and growth to cyclic variation 
in carbon dioxide concentration. 
Photosynthetica 50: 395–400.


Bunce, J.A. 2013. 
Effects of pulses of 
elevated carbon dioxide 
concentration on 
stomatal conductance 
and photosynthesis 
in wheat and rice. 
Physiologia Plantarum 149: 214–21.


Bunce, J.A. 2014. 
Limitations to soybean photosynthesis
at elevated carbon dioxide 
in free-air enrichment 
and open top chamber systems. 
Plant Science 226: 131–5.


Bunce, J.A. 2016. 
Responses of soybeans and wheat 
to elevated CO2 in free-air 
and open top chamber systems. 
Field Crops Research 186: 78–85.


Cheng, L., et al. 2017. 
Recent increases in 
terrestrial carbon uptake 
at little cost to the water cycle. 
Nature Communications 8: 110.


Idso, K.E. and Idso, S.B. 1994. 
Plant responses 
to atmospheric CO2 enrichment 
in the face of environmental constraints: 
a review of the past 10 years’ research.
Agricultural and Forest Meteorology 69: 153–203.


Idso, S.B. and Kimball, B.A. 2001. 
CO2 enrichment of sour orange trees: 
13 years and counting. 
Environmental and Experimental Botany 46: 147–53.


Kimball, B.A. 1983. 
Carbon dioxide and agricultural yield: 
an assemblage and analysis 
of 430 prior observations. 
Agronomy Journal 75: 779–88.


Sanz-Sáez, A., Koester, R.P., Rosenthal, 
D.M., Montes, C.M., Ort, D.R., and Ainsworth, E.A. 2017. 
Leaf and canopy scale drivers
 of genotypic variation 
in soybean response 
to elevated carbon dioxide 
concentration. 
Global Change Biology 23: 3908–20.


Saxe, H., Ellsworth, D.S., and Heath, J. 1998. 
Tree and forest functioning 
in an enriched CO2 atmosphere. 
New Phytologist 139: 395–436.


Sultana, H., Armstrong, R., Suter, H., 
Chen, D., and Nicolas, M.E. 2017. 
A short-term study of wheat grain 
protein response to post-anthesis 
foliar nitrogen application 
under elevated CO2 
and supplementary irrigation. 
Journal of Cereal Science 75: 135–7.


Zhu, Z., et al. 2016. 
Greening of the Earth and its drivers. 
Nature Climate Change 6: 791–5.