Total Pageviews

Monday, February 10, 2020

Chavan et al. (2019) -- Elevated CO2 protects wheat from heat stress

Chavan, S.G., Duursma, R.A., 
Tausz, M. and Channoum, O. 

2019

Elevated CO2 alleviates 
the negative impact 
of heat stress 
on wheat physiology 
but not on grain yield. 

Journal of Experimental 
Botany 70: 6447-6459.



NOTE:
Chavan et al. (2019) 
write that 
"developing 
wheat varieties 
ready for 
future climates, 
calls for improved 
understanding of 
how elevated CO2 
and heat stress 
interactively impact 
wheat yields."



SUMMARY:
In the future, 
elevated CO2 levels
may be able to eliminate
a large portion of the 
negative impact of 
high temperature stress 
on wheat grain yields.

Chavan et al. state that 
"heat stress 
caused 
irreversible 
photosynthetic 
damage at 
ambient CO2, 
while growth 
at elevated CO2 
mitigated the 
negative impact 
of heat stress 
on photosynthesis." 

"Plant biomass 
completely 
recovered 
from 
heat stress, 
under both 
CO2 treatments, 
due to the 
development 
of additional 
late tillers 
and ears; 
yet these 
did not 
fully develop 
and fill grains," 
which explains
the drop 
in grain yield 
observed under 
heat stress. 



DETAILS:
Chavan et al. 
report that 
elevated CO2 
enhanced net 
photosynthesis 
by 36% 
in non-heat 
stressed plants, 
whereas 
high temperature 
stress reduced 
this parameter 
by 42%. 

In the combined 
elevated CO2 and 
heat stress treatment, 
net photosynthesis 
was not reduced 
because, 
"elevated CO2 
protected 
photosynthesis 
by increasing 
ribulose 
biphosphate 
regeneration 
capacity 
and reducing 
photochemical 
damage 
[caused by] 
heat stress."

The experiment 
was conducted 
in controlled-
environment
glasshouses at the 
Hawkesbury campus 
of Western Sydney 
University, Richmond, 
New South Wales, 
Australia. 

The authors used
a commercial 
wheat cultivar, 
Scout, which they 
describe as a 
"high yielding 
variety with 
very good 
grain quality 
[that] contains 
a putative 
high transpiration 
efficiency gene 
which can increase 
water use efficiency." 

CO2 concentrations 
examined in the study 
included ambient 
         ( 419 ppm ) 
    and elevated 
         ( 654 ppm ). 

Temperatures 
were 
maintained 
at 22/15 °C 
( day / night ) 
in the 
control 
treatment. 

Then, 
thirteen weeks 
after planting 
heat stress 
was enacted 
on half 
the plants 
in each CO2 
treatment 
by raising 
the day/night 
temperatures 
to 40/24 °C 
for five days. 

Thereafter, the 
heat-stressed 
plants were 
returned to 
the control 
temperatures.

Adequate water 
was supplied 
to all treatments 
throughout the 
experiment 
so as to avoid 
confounding 
effects of 
water stress.



CHART  BELOW:
With respect to 
biomass and yield, 
elevated CO2 
stimulated these 
two parameters 
by 36% and 31%, 
respectively, 
in the control 
treatment. 

Heat stress 
alone, 
in contrast, 
induced a small 
non-significant 
reduction in 
total biomass
and a 
44% reduction 
in grain yield. 

When 
elevated CO2
and heat stress 
were combined, 
total biomass 
increased by 46% 
over the 
control 
treatment 
( ambient CO2 and 
non-heat stress ) 
and by 58% 
relative to the
heat stress
treatment under 
ambient CO2. 

Grain yield
experienced 
a 23% decline 
in the combined 
elevated CO2 and 
heat stress 
treatment 
relative to control 
conditions, but a 
positive 37% 
increase relative to 
heat stress alone 
at ambient CO2. 







Total biomass (a) 
and grain yield (b) 
of wheat plants 
at harvest 
in response to 
elevated CO2 
and heat stress (HS). 

Values represent 
means ± SE using 
two-way ANOVA. 

Means sharing 
the same letter 
in the 
individual panels 
are not significantly 
different 
according to 
Tukey's HSD test 
at the 5% level. 

Statistical 
significance 
levels (t-test) 
for eCO2 effect 
are shown 
as follows: 
** P < 0.01: 
*** P < 0.001. 

The percentages 
in red text 
indicate 
the change 
in biomass 
or grain yield 
due to 
elevated CO2 
under control 
or heat stress
conditions.